If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2-24y-59=0
a = 4; b = -24; c = -59;
Δ = b2-4ac
Δ = -242-4·4·(-59)
Δ = 1520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1520}=\sqrt{16*95}=\sqrt{16}*\sqrt{95}=4\sqrt{95}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-4\sqrt{95}}{2*4}=\frac{24-4\sqrt{95}}{8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+4\sqrt{95}}{2*4}=\frac{24+4\sqrt{95}}{8} $
| 1/14(x-20)=6+x | | 1/4x+2√x+15=x | | 16+5x=4(-x+2)-19 | | E(t)=−2.4t+75 | | 4(t-1)-5(4t-1)=27-7(6t+5) | | Y=5x-10. | | 6x=3=0 | | 60=20y | | 7.2=4+x | | 21+5.5x=11+6.75x | | 3(x-2)-8=7x-2(1-x) | | 1x+150=180 | | -7(3x-7)+7=-21+56 | | (2x-4)(x^2-1)(3x^2-x)=0 | | 8(3x+1)=56 | | 15=5x-5/3 | | 6+3t=8t-15=2t | | 2x+1=9x-32 | | m/8+1=3 | | x/(x+3)=9/10 | | 6+2(x+5)=8x+2 | | 0,5x-x=10 | | 4^3x-3=8^4x-4 | | 6x-3=x/2+30 | | -3(5x=8) | | 5(3x-7)=-95 | | -3(5x=80 | | 8/3•y=32/3 | | -3(5x=8 | | 5/6b=-17/8 | | 2x+10=3x+2=4x-6 | | (1/2)x(x-4)=30 |